Statistical Learning with Sparsity: The Lasso and Generalizations - Chapman & Hall / CRC Monographs on Statistics and Applied Probability - Hastie, Trevor (Stanford University, California, USA) - Bücher - Taylor & Francis Inc - 9781498712163 - 7. Mai 2015
Bei Nichtübereinstimmung von Cover und Titel gilt der Titel

Statistical Learning with Sparsity: The Lasso and Generalizations - Chapman & Hall / CRC Monographs on Statistics and Applied Probability 1. Ausgabe

Hastie, Trevor (Stanford University, California, USA)

Preis
Fr. 112,99

Bestellware

Lieferdatum: ca. 21. - 28. Nov
Weihnachtsgeschenke können bis zum 31. Januar umgetauscht werden
Zu deiner iMusic Wunschliste hinzufügen

Auch vorhanden als:

Statistical Learning with Sparsity: The Lasso and Generalizations - Chapman & Hall / CRC Monographs on Statistics and Applied Probability 1. Ausgabe

Discover New Methods for Dealing with High-Dimensional Data

A sparse statistical model has only a small number of nonzero parameters or weights; therefore, it is much easier to estimate and interpret than a dense model. Statistical Learning with Sparsity: The Lasso and Generalizations presents methods that exploit sparsity to help recover the underlying signal in a set of data.

Top experts in this rapidly evolving field, the authors describe the lasso for linear regression and a simple coordinate descent algorithm for its computation. They discuss the application of ?1 penalties to generalized linear models and support vector machines, cover generalized penalties such as the elastic net and group lasso, and review numerical methods for optimization. They also present statistical inference methods for fitted (lasso) models, including the bootstrap, Bayesian methods, and recently developed approaches. In addition, the book examines matrix decomposition, sparse multivariate analysis, graphical models, and compressed sensing. It concludes with a survey of theoretical results for the lasso.

In this age of big data, the number of features measured on a person or object can be large and might be larger than the number of observations. This book shows how the sparsity assumption allows us to tackle these problems and extract useful and reproducible patterns from big datasets. Data analysts, computer scientists, and theorists will appreciate this thorough and up-to-date treatment of sparse statistical modeling.


367 pages, 99 colour illustrations, 11 colour tables

Medien Bücher     Gebundenes Buch   (Buch mit hartem Rücken und steifem Einband)
Erscheinungsdatum 7. Mai 2015
ISBN13 9781498712163
Verlag Taylor & Francis Inc
Seitenanzahl 367
Maße 163 × 244 × 22 mm   ·   742 g
Sprache Englisch