Data Mining-approaches to Mine Frequent Patterns: Data Mining Strategies for Transactional Databases Containing Maximal Frequent Patterns - Bharat Gupta - Bücher - LAP LAMBERT Academic Publishing - 9783659110320 - 26. April 2012
Bei Nichtübereinstimmung von Cover und Titel gilt der Titel

Data Mining-approaches to Mine Frequent Patterns: Data Mining Strategies for Transactional Databases Containing Maximal Frequent Patterns


Möchtest Du eine E-Mail, sobald der Artikel verfügbar ist?
Hast du ein Profil? Anmelden
Weihnachtsgeschenke können bis zum 31. Januar umgetauscht werden
Zu deiner iMusic Wunschliste hinzufügen

In data mining, Association rule mining becomes one of the important tasks of descriptive technique which can be defined as discovering meaningful patterns from large collection of data. Mining frequent itemset is very fundamental part of association rule mining. Many algorithms have been proposed from last many decades including horizontal layout based techniques, vertical layout based techniques, and projected layout based techniques. But most of the techniques suffer from repeated database scan, Candidate generation (Apriori Algorithms), memory consumption problem (FP-tree Algorithms) and many more for mining frequent patterns. As in retailer industry many transactional databases contain same set of transactions many times, to apply this thought, in this thesis present a new technique which is combination of present maximal Apriori (improved Apriori) and FP-tree techniques that guarantee the better performance than classical aprioi algorithm. Another aim is to study and analyze the various existing techniques for mining frequent itemsets and evaluate the performance of new techniques and compare with the existing classical Apriori and FP- tree algorithm.

Medien Bücher     Taschenbuch   (Buch mit Softcover und geklebtem Rücken)
Erscheinungsdatum 26. April 2012
ISBN13 9783659110320
Verlag LAP LAMBERT Academic Publishing
Seitenanzahl 64
Maße 150 × 4 × 226 mm   ·   104 g
Sprache Englisch