Stochastic Weight Update in Neural Networks: Theoretical Study of Stochastic Neural  Networks Learning - Peter Sincák - Bücher - LAP LAMBERT Academic Publishing - 9783659231025 - 10. September 2012
Bei Nichtübereinstimmung von Cover und Titel gilt der Titel

Stochastic Weight Update in Neural Networks: Theoretical Study of Stochastic Neural Networks Learning

Preis
SFr. 37,99
exkl. MwSt.

Bestellware

Lieferdatum: ca. 8. - 16. Jan 2026
Weihnachtsgeschenke können bis zum 31. Januar umgetauscht werden
Zu deiner iMusic Wunschliste hinzufügen

This book is focused on the modification of the Backpropagation Through Time algorithm and its implementation on the Recurrent Neural Networks. Our work is inspired and motivated by the results of the Salvetti and Wilamowski experiment focused on the introduction of stochasticity into Backpropagation algorithm on experiments with the XOR problem. The stochasticity can be embedded into different parts of the BP algorithm. We introduced and implemented different types of BP algorithm modifications, which gradually add more stochasticity to the BP algorithm. The goal of this book is to prove, that this stochastic modification is able to learn efficiently and the results are comparable to classical implementation. This stochasticity also brings a simpler implementation of the algorithm, than the classical one, which is especially useful on the Recurrent Neural Networks.

Medien Bücher     Taschenbuch   (Buch mit Softcover und geklebtem Rücken)
Erscheinungsdatum 10. September 2012
ISBN13 9783659231025
Verlag LAP LAMBERT Academic Publishing
Seitenanzahl 104
Maße 150 × 6 × 226 mm   ·   173 g
Sprache Deutsch  

Weitere Titel von Peter Sincák

Alle anzeigen