Sparse Learning Under Regularization Framework: Theory and Applications - Michael R. Lyu - Bücher - LAP LAMBERT Academic Publishing - 9783844330304 - 15. April 2011
Bei Nichtübereinstimmung von Cover und Titel gilt der Titel

Sparse Learning Under Regularization Framework: Theory and Applications

Preis
SFr. 44,99
exkl. MwSt.

Bestellware

Lieferdatum: ca. 8. - 16. Jan 2026
Weihnachtsgeschenke können bis zum 31. Januar umgetauscht werden
Zu deiner iMusic Wunschliste hinzufügen

Regularization is a dominant theme in machine learning and statistics due to its prominent ability in providing an intuitive and principled tool for learning from high-dimensional data. As large-scale learning applications become popular, developing efficient algorithms and parsimonious models become promising and necessary for these applications. Aiming at solving large-scale learning problems, this book tackles the key research problems ranging from feature selection to learning with mixed unlabeled data and learning data similarity representation. More specifically, we focus on the problems in three areas: online learning, semi-supervised learning, and multiple kernel learning. The proposed models can be applied in various applications, including marketing analysis, bioinformatics, pattern recognition, etc.

Medien Bücher     Taschenbuch   (Buch mit Softcover und geklebtem Rücken)
Erscheinungsdatum 15. April 2011
ISBN13 9783844330304
Verlag LAP LAMBERT Academic Publishing
Seitenanzahl 152
Maße 226 × 9 × 150 mm   ·   244 g
Sprache Deutsch  

Weitere Titel von Michael R. Lyu

Alle anzeigen